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Week 2

0.0.0.1 Sequences. A sequence is a special kind of function. It is a function

whose domain is the set N.

Because they are of particular importance a particular notation has been de-

veloped.

The sequence {(n, f(n)) : n ∈ N} is more often referred to as:

• The sequence {f(n)}n∈N

• The sequence {f(n)}

• The sequence f(1), f(2), ...........f(n), ........

• The sequence {an}n∈N where an = f(n).

• The sequence {an} where an = f(n).

• The sequence a1, a2, .............an.......... where an = f(n).

A graph of a sequence will be “dotty” since the domain is a set of integers.

Example:

The following is a sketch of the graph of the sequence

{

1

n

}

1
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0.0.0.2 Series:. A series is a special kind of sequence which is denoted by a

formal sum of the form
∑

an or
∞
∑

n=1

an or more informally by :

a1 + a2 + a3 + a4 . . .

Each of these notations denote the sequence

a1, a1 + a2, a1 + a2 + a3, . . .

Example 0.1

• A series of the form

a+ ar + ar2 + ar3 + . . .

is known as a geometric series.

• An infinite decimal is an infinite series.

For example

0.
.

3 = 0.333 · · · = 3

10
+

3

102
+

3

103
+ . . .
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This infinite decimal is a geometric series with a =
3

10
, r =

1

10
.

• The infinite repeating decimal
.

1
.

3
.

2 is also a geometric series since:

.

1
.

3
.

2 = 132132132 · · · = 1

10
+

3

102
+

2

103
+

1

104
+

3

105
+

2

106
+ . . .

=
132

103
+

132

106
+

132

109
+ . . .

which is a geometric series with a =
132

103
and r =

1

103
.

0.0.1 Boundedness

A set S is said to be bounded above, bounded below, bounded, if there is some

M,m such that

x ≤ M,m ≤ x,m ≤ x ≤ M for all x ∈ S.

A function f is said to be bounded above, bounded below, bounded, respectively

if the range of f is bounded above, bounded below, bounded.

Example 0.2

The function x2 is bounded below (by 0) and is not bounded above.

The function x2, x ∈ [−2, 2] is bounded above (by 4) and below (by 0) and is

therefore bounded.

The function cos(x) is bounded.

The function x3 is not bounded above or below.

The sequence
{

n2
}

is not bounded above.

The sequence
{

(−1)n−1n2
}

is not bounded above or below.

The sequence {(−1)n} is bounded.

A function which is bounded above may not have a maximum value and a

function which is bounded below may not have a minimum value.

Example 0.3

The function f(x) =















x2, x ∈ (−2, 2)

3, x = −2

3, x = 2

is bounded above but does not have a

maximum value.
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Definition 0.4

A function f is said to be increasing [decreasing ] if:

f(x1) ≤ f(x2) [f(x1) ≥ f(x2)] whenever x1 < x2 for all x1, x2 in its domain.

A function f is said to be strictly increasing [strictly decreasing ] if:

f(x1) < f(x2) [f(x1) > f(x2)] whenever x1 < x2 for all x1, x2 in its domain.

A function f which is either increasing or decreasing is said to be monotone.

Definition 0.5

A function is said to injective if each x is paired with a different y.

That is, f is injective f(x1) = f(x2) only if x1 = x2.

Example 0.6

f(x) = x2 is not injective because, for instance, f(−2) = f(2).

f(x) = x2, x ∈ [0,∞) is injective.

f(x) = x3 is injective.

It is easy to prove that a function which is strictly increasing or strictly de-

creasing is also injective.

Sample Graphs:

Increasing
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Strictly Increasing

Decreasing
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Strictly Decreasing

0.0.2 Limits

0.0.2.1 Absolute Values.

Definition 0.7

|x| = x if x ≥ 0 and |x| = −x if x < 0.

Note the following properties of absolute value:

1. x ≤ |x|

2. |xy| = |x||y|.

3.
∣

∣

∣

x

y

∣

∣

∣
=

|x|
|y| .

4. |x+ y| ≤ |x|+ |y| (Triangle Inequality.)

5. |x− y| ≥ |x| − |y|

6. |x− y| = |y − x|

7. (x+ y)2 = |x+ y|2.

8. |x| < ǫ ⇒ −ǫ < x < ǫ.
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9. |x− y| < ǫ ⇒ −ǫ < x− y < ǫ

⇒ −ǫ < y − x < ǫ

⇒ Y − ǫ < x < y + ǫ

⇒ x− ǫ < y < x+ ǫ.

10. f(x)2 < a ⇒ |f(x)| < √
a.

Probably the most important definition in this module is that of limit.

Example 0.8

When we list the terms of the sequence

{

n

n+ 1

}

like this

1

2
, 2

3
, 3

4
, 5

6
, 7

8
, 8

9
, 9

10
. . .

we notice that the terms approach 1 as n increases.

It is also true that the terms “approach” 2 in the sense that they get closer to

2 also. However, the sequence clearly has a special relationship with 1 in that

the terms actually become arbitrarily close to 1. If necessary, we can check this

by looking at the values of

∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

which measures the distance between

n

n+ 1
and 1.

Terms: 1

2
, 2

3
, 3

4
, 5

6
, 6

7
, . . .

Distance from 1: | 1
2
− 1|, | 2

3
− 1|, | 3

4
− 1|, | 5

6
− 1|, | 6

7
− 1| . . .

= = = = = . . .
1

2
, 1

3
, 1

4
, 1

6
, 1

7
, . . .

We see that

∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

becomes arbitrarily small as n gets larger.

We make the phrase “arbitrarily small” precise by saying

for any real number ǫ we can make

∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

< ǫ

Finally note that the phrase

we can make

∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

< ǫ

means that we can find N ∈ R such that
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∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

< ǫ for all n > N.

Definition 0.9

Let {an} be an infinite sequence of real numbers.

L ∈ R is said to be the limit of the sequence if for each ǫ > 0 ∈ R there is

N ∈ R such that
|an − L| < ǫ, ∀n > N.

Notation: We write lim
n→∞

an = L

Example 0.10

1. lim
n→∞

1

n
= 0. Since, given ǫ > 0 we have:

| 1
n
− 0| = 1

n
< ǫ ∀ n >

1

ǫ

e.g. If ǫ = 10−6 then
1

n
< ǫ ∀ n > 106.

2. lim
n→∞

n

n+ 1
= 1. Since, given ǫ > 0 we have:

∣

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n− (n+ 1)

n+ 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n+ 1

∣

∣

∣

∣

∣

< ǫ ∀ n >
1

ǫ
− 1

A constant sequence has a limit in the most trivial way. For example, the se-

quence 2, 2, 2, 2, . . . clearly has limit 2.

Using the curly bracket notation {2} looks a bit odd for this sequence and so

does the limit statement lim
n→∞

2 = 2 but we do write it from time to time.

In general, if k is a real number, the constant sequence {k} has limit k and this

is written lim
n→∞

k = k.

Some Properties of Limits:

lim
n→∞

an = L1, lim
n→∞

bn = L2 ⇒

(i) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = L1 + L2

(ii) lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn = L1L2
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(iii) lim
n→∞

(

an

bn

)

=
lim
n→∞

an

lim
n→∞

bn
=

L1

L2

if L2 6= 0.

(iv) Let {an} and {bn} be sequences and N ∈ N with an ≤ bn ∀n ∈ N.

If the sequences are convergent with lim
n→∞

an = L1 and lim
n→∞

bn = L2 then

L1 ≤ L2.

These properties enable us to compute limits for some compound expressions

in terms of constituent parts:

Example 0.11

(i) lim
n→∞

1

1 + nk
= lim

n→∞

1

n

1

n
+ k

=
lim

n→∞

1

n

lim
n→∞

1

n
+ k

– using property (iii) above,

=
lim
n→∞

1

n

lim
n→∞

1

n
+ lim

n→∞

k

– using property (i) above.

We have already proven that lim
n→∞

1

n
= 0 and lim

n→∞

k = k and so we have

lim
n→∞

1

1 + nh
=

0

0 + h
= 0.

(ii) lim
n→∞

n2 + 3n

2n2 + 5
= lim

n→∞

n
2

n
2 + 3n

n
2

2n2

n
2 + 5

n
2

= lim
n→∞

1 + 3

n

2 + 5

n
2

=
lim
n→∞

(

1 + 3

n

)

lim
n→∞

(

2 + 5

n
2

)

– using property (iii) above,

=
lim

n→∞

1 + lim
n→∞

(

3

n

)

lim
n→∞

2 + lim
n→∞

(

5

n
2

)

– using property (i) above,

=
lim
n→∞

1 + lim
n→∞

(

3

n

)

lim
n→∞

2 + lim
n→∞

5 lim
n→∞

(

1

n

)

lim
n→∞

(

1

n

)

– using property (ii) above,

We have proven above that lim
n→∞

2 = 2, lim
n→∞

5 = 5 and lim
n→∞

1

n
= 0 therefore we

have:

lim
n→∞

1 + lim
n→∞

(

3

n

)

lim
n→∞

2 + lim
n→∞

5 lim
n→∞

(

1

n

)

lim
n→∞

(

1

n

) =
1 + 0

2 + 0
=

1

2


