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Week 2

0.0.0.1 Sequences. A sequence is a special kind of function. It is a function
whose domain is the set N.

Because they are of particular importance a particular notation has been de-
veloped.

The sequence {(n, f(n)) : n € N} is more often referred to as:

e The sequence {f(n)}nen
The sequence {f(n)}
The sequence f(1), f(2),.ccoeennee. f(n)y .

The sequence {a, }nen where a, = f(n).

The sequence {a,} where a,, = f(n).
e The sequence aq, as, ............. ppevernnenn. where a,, = f(n).

A graph of a sequence will be “dotty” since the domain is a set of integers.

Example:

1
The following is a sketch of the graph of the sequence {n}
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0.0.0.2 Series:. A series is a special kind of sequence which is denoted by a

o0
formal sum of the form > a, or Y a, or more informally by :
n=1

a1 +asx+as+ay...
Each of these notations denote the sequence

al,a1+a27a1+a2+a3,...

Example 0.1

e A series of the form
a+ar—|—ar2—|—ar3—|—...

is known as a geometric series.

e An infinite decimal is an infinite series.

For example

: 3 3 3
03=0333- - =—+-—+-—7+...
10+102+103+
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1

This infinite decimal is a geometric series with a =

10" " 10

e The infinite repeating decimal 132 is also a geometric series since:

1 3 2 1 3 2
132 = 132132132 - = — + o 4 — 4 — 4
52 = 15213213 10 102 " 105 107 T 105 100 T

132 132 132

~ 108 T 100 Taoe T
hich i . . ith 132 1
which is a geometric series with a = 108 and r = 108"

0.0.1 Boundedness

A set S is said to be bounded above, bounded below, bounded, if there is some
M, m such that

r<Mm<zm<z<M forall z € S.

A function f is said to be bounded above, bounded below, bounded, respectively
if the range of f is bounded above, bounded below, bounded.

Example 0.2

The function z? is bounded below (by 0) and is not bounded above.

The function 22,2 € [~2,2] is bounded above (by 4) and below (by 0) and is
therefore bounded.

The function cos(x) is bounded.

3 is not bounded above or below.

The sequence {nz} is not bounded above.

The sequence {(—1)""'n?} is not bounded above or below.

The sequence {(—1)"} is bounded.

The function x

A function which is bounded above may not have a maximum value and a
function which is bounded below may not have a minimum value.

Example 0.3 W2, e (=2,2)
The function f(z) =<3, z=-2 is bounded above but does not have a
3, x=2

maximum value.
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Definition 0.4
A function f is said to be increasing [decreasing] if:

flz1) < f(ze) [f(x1) > f(z2)] whenever z1 < x4 for all 1, x5 in its domain.

A function f is said to be strictly increasing [strictly decreasing] if:
flx1) < f(z2) [f(z1) > f(22)] whenever z1 < x5 for all x1,z2 in its domain.

A function f which is either increasing or decreasing is said to be monotone.

Definition 0.5

A function is said to injective if each x is paired with a different y.
That is, f is injective f(z1) = f(z2) only if z1 = .

Example 0.6

f(x) = 22 is not injective because, for instance, f(—2) = f(2).
f(z) =22,z € [0,00) is injective.

f(z) = 23 is injective.

It is easy to prove that a function which is strictly increasing or strictly de-
creasing is also injective.
Sample Graphs:

Increasing
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Strictly Increasing

Decreasing
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Strictly Decreasing

0.0.2 Limits

0.0.2.1 Absolute Values.

Definition 0.7

|z =z if >0 and |z| = —z if z <0.

Note the following properties of absolute value:

1.z <|z|
2. [yl = |2(lyl.
3. %] = lal,
yl oyl
4. |z +y| < |z| + |y| (Triangle Inequality.)
5. |z =y = |z = Iy
6. |z —y| = |y — x|
7. (x+y)? =z +y
8. |z|<e=—e<z<e
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9. |[z—yl<e=>—e<z—y<e
= —e<y—x<e
=Y -—e<z<y+te

sr—e<y<z-+e

10. f(z)? <a=|f(2)] < Va.

Probably the most important definition in this module is that of limit.

Example 0.8

When we list the terms of the sequence {:L_l} like this
n

1235 78 9

we notice that the terms approach 1 as n increases.

It is also true that the terms “approach” 2 in the sense that they get closer to
2 also. However, the sequence clearly has a special relationship with 1 in that
the terms actually become arbitrarily close to 1. If necessary, we can check this

by looking at the values of % — 1| which measures the distance between
n

and 1.
n+1
) 1 2 3 5 6
Terms: 5 % 4 2, s,
i . 1 2 3 5 6
Distance from 1: 5 — 1, |§—1|, 2 -1, |671|’ 771‘
I Il I Il I
1 1 1 1 1
27 37 4 6 7
n . .
We see that P 1| becomes arbitrarily small as n gets larger.
n

We make the phrase “arbitrarily small” precise by saying

n
for any real number ¢ we can make 1 1] <€
Finally note that the phrase
we can make -1 <e

means that we can find N € R such that
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n
n+1

— 1| <eforall n > N.

Definition 0.9

Let {a,} be an infinite sequence of real numbers.
L € R is said to be the limit of the sequence if for each ¢ > 0 € R there is
N € R such that

lan, — L| < €,¥n > N.

Notation: We write lim a, = L

n—oo

Example 0.10

1
1. lim — = 0. Since, given € > 0 we have:
n—oon,

1 1 1
|- —-0l=—<eVn>-
n n €

1
e.g. If e =107% then — < e ¥V n > 10°.
n

2. lim = 1. Since, given € > 0 we have:
n—oon +
— 1 1 1
LY I (n+): <eVn>--1
n+1 n+1 n+1 €

A constant sequence has a limit in the most trivial way. For example, the se-
quence 2,2,2,2,... clearly has limit 2.

Using the curly bracket notation {2} looks a bit odd for this sequence and so

does the limit statement lim 2 = 2 but we do write it from time to time.
n— 00

In general, if k is a real number, the constant sequence {k} has limit k& and this
is written lim k = k.

n—oo
Some Properties of Limits:

lim a, = Ly, lim b, = Ly =
n— 00 n—oo

(i) lim (an +b,) = lim a, + lim b, = L1 + Lo

n— oo n— oo n— oo

(ii)) lim (anb,) = lim a, lim b, = L1Ls
n— o0 n—o0 n—oo
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lim a
n n Ly
(i) lim (“) =2 S L, 0.

n—oo \ by, lim b, Lo
n—oo

(iv) Let {an} and {b,} be sequences and N € N with a,, < b, Vn € N.
If the sequences are convergent with lim a, = L; and lim b, = Ly then
n—00 n—00
L, < L,.

These properties enable us to compute limits for some compound expressions
in terms of constituent parts:

Example 0.11
lim +

1 1 n
(i) lim = lim +2— = "%
n—ool + nk n—oo = + k lim = +k
n—oo

— using property (iii) above,
lim +
n

© lim L+ lim k
n—oo n—oo
— using property (i) above.

We have already proven that lim % =0 and lim k = k and so we have
n—oo

n—o0
1 0
1. 7:7:0
noool +nh O+ h
: 3
omPisn o mgsm g3l (145)
(ii) lim ———F = hmH: lim == =
n—oo2n? + 5 nooo 2. 4 5 noo024 5 nl—>nclo(2+ﬁ)

— using property (iii) above,
_m i ()
lim 2 + lim (%)

n—oo n—oQ

3

— using property (i) above,
lim 1+ lim (2)

n

— n—00 n—00
lim 2+ lim 5 lim (1) lim (%)
n—00 n—oo n—oo n—oo

— using property (ii) above,
We have proven above that lim 2 =2, lim 5 =5 and lim % = 0 therefore we
b n— 00 n— 00 n—00
ave:

. . 3
Jm 1+ Jim (5) 140 1

lim 2+ lim 5 lim (2) lim (1)  2+0 2

n—00 n—00 n—00 n—oo 1




