Pat O'Sullivan

Mh4714 Week 2

Week 2

0.0.0.1 Sequences. A sequence is a special kind of function. It is a function whose domain is the set \mathbb{N}.
Because they are of particular importance a particular notation has been developed.
The sequence $\{(n, f(n)): n \in \mathbb{N}\}$ is more often referred to as:

- The sequence $\{f(n)\}_{n \in \mathbb{N}}$
- The sequence $\{f(n)\}$
- The sequence $f(1), f(2)$, \qquad $f(n)$, \qquad
- The sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ where $a_{n}=f(n)$.
- The sequence $\left\{a_{n}\right\}$ where $a_{n}=f(n)$.
- The sequence a_{1}, a_{2}, \qquad
\qquad where $a_{n}=f(n)$.

A graph of a sequence will be "dotty" since the domain is a set of integers.

Example:
The following is a sketch of the graph of the sequence $\left\{\frac{1}{n}\right\}$

0.0.0.2 Series:. A series is a special kind of sequence which is denoted by a formal sum of the form $\sum a_{n}$ or $\sum_{n=1}^{\infty} a_{n}$ or more informally by :

$$
a_{1}+a_{2}+a_{3}+a_{4} \ldots
$$

Each of these notations denote the sequence

$$
a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}, \ldots
$$

Example 0.1

- A series of the form

$$
a+a r+a r^{2}+a r^{3}+\ldots
$$

is known as a geometric series.

- An infinite decimal is an infinite series.

For example

$$
0 . \dot{3}=0.333 \cdots=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\ldots
$$

This infinite decimal is a geometric series with $a=\frac{3}{10}, r=\frac{1}{10}$.

- The infinite repeating decimal 132 is also a geometric series since:

$$
\begin{aligned}
1 \dot{3} \dot{2}=132132132 \cdots & =\frac{1}{10}+\frac{3}{10^{2}}+\frac{2}{10^{3}}+\frac{1}{10^{4}}+\frac{3}{10^{5}}+\frac{2}{10^{6}}+\ldots \\
& =\frac{132}{10^{3}}+\frac{132}{10^{6}}+\frac{132}{10^{9}}+\ldots
\end{aligned}
$$

which is a geometric series with $a=\frac{132}{10^{3}}$ and $r=\frac{1}{10^{3}}$.

0.0.1 Boundedness

A set S is said to be bounded above, bounded below, bounded, if there is some M, m such that

$$
x \leq M, m \leq x, m \leq x \leq M \text { for all } x \in S
$$

A function f is said to be bounded above, bounded below, bounded, respectively if the range of f is bounded above, bounded below, bounded.

Example 0.2

The function x^{2} is bounded below (by 0) and is not bounded above.
The function $x^{2}, x \in[-2,2]$ is bounded above (by 4) and below (by 0) and is therefore bounded.
The function $\cos (x)$ is bounded.
The function x^{3} is not bounded above or below.
The sequence $\left\{n^{2}\right\}$ is not bounded above.
The sequence $\left\{(-1)^{n-1} n^{2}\right\}$ is not bounded above or below.
The sequence $\left\{(-1)^{n}\right\}$ is bounded.

A function which is bounded above may not have a maximum value and a function which is bounded below may not have a minimum value.

Example 0.3
The function $f(x)=\left\{\begin{array}{ll}x^{2}, & x \in(-2,2) \\ 3, & x=-2 \\ 3, & x=2\end{array}\right.$ is bounded above but does not have a maximum value.

Definition 0.4

A function f is said to be increasing [decreasing] if:
$f\left(x_{1}\right) \leq f\left(x_{2}\right)\left[f\left(x_{1}\right) \geq f\left(x_{2}\right)\right]$ whenever $x_{1}<x_{2}$ for all x_{1}, x_{2} in its domain.
A function f is said to be strictly increasing [strictly decreasing] if: $f\left(x_{1}\right)<f\left(x_{2}\right)\left[f\left(x_{1}\right)>f\left(x_{2}\right)\right]$ whenever $x_{1}<x_{2}$ for all x_{1}, x_{2} in its domain.

A function f which is either increasing or decreasing is said to be monotone.

Definition 0.5

A function is said to injective if each x is paired with a different y. That is, f is injective $f\left(x_{1}\right)=f\left(x_{2}\right)$ only if $x_{1}=x_{2}$.

Example 0.6

$f(x)=x^{2}$ is not injective because, for instance, $f(-2)=f(2)$.
$f(x)=x^{2}, x \in[0, \infty)$ is injective.
$f(x)=x^{3}$ is injective.
It is easy to prove that a function which is strictly increasing or strictly decreasing is also injective.
Sample Graphs:

0.0.2 Limits

0.0.2.1 Absolute Values.

Definition 0.7
$|x|=x$ if $x \geq 0$ and $|x|=-x$ if $x<0$.

Note the following properties of absolute value:

1. $x \leq|x|$
2. $|x y|=|x||y|$.
3. $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$.
4. $|x+y| \leq|x|+|y|$ (Triangle Inequality.)
5. $|x-y| \geq|x|-|y|$
6. $|x-y|=|y-x|$
7. $(x+y)^{2}=|x+y|^{2}$.
8. $|x|<\epsilon \Rightarrow-\epsilon<x<\epsilon$.
9. $|x-y|<\epsilon \Rightarrow-\epsilon<x-y<\epsilon$

$$
\begin{aligned}
& \Rightarrow-\epsilon<y-x<\epsilon \\
\Rightarrow & Y-\epsilon<x<y+\epsilon \\
\Rightarrow & x-\epsilon<y<x+\epsilon .
\end{aligned}
$$

10. $f(x)^{2}<a \Rightarrow|f(x)|<\sqrt{a}$.

Probably the most important definition in this module is that of limit.

Example 0.8

When we list the terms of the sequence $\left\{\frac{n}{n+1}\right\}$ like this

$$
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{8}{9}, \frac{9}{10} \ldots
$$

we notice that the terms approach 1 as n increases.

It is also true that the terms "approach" 2 in the sense that they get closer to 2 also. However, the sequence clearly has a special relationship with 1 in that the terms actually become arbitrarily close to 1 . If necessary, we can check this by looking at the values of $\left|\frac{n}{n+1}-1\right|$ which measures the distance between $\frac{n}{n+1}$ and 1 .
$\begin{array}{ccccccc}\text { Terms: } & \frac{1}{2}, & \frac{2}{3}, & \frac{3}{4}, & \frac{5}{6}, & \frac{6}{7}, & \ldots \\ \text { from 1: } & \left|\frac{1}{2} \frac{1}{2} 1\right|, & \left|\frac{2}{3}-1\right|, & \left|\frac{3}{4}-1\right|, & \left\lvert\, \frac{5}{6} \frac{-1 \mid}{\|}\right. & \left|\frac{6}{7}-1\right| & \ldots \\ & \| & \| & \| & \| & \| & \ldots \\ & \frac{1}{2}, & \frac{1}{3}, & \frac{1}{4}, & \frac{1}{6}, & \frac{1}{7}, & \ldots\end{array}$
We see that $\left|\frac{n}{n+1}-1\right|$ becomes arbitrarily small as n gets larger.
We make the phrase "arbitrarily small" precise by saying

$$
\text { for any real number } \epsilon \text { we can make }\left|\frac{n}{n+1}-1\right|<\epsilon
$$

Finally note that the phrase

$$
\text { we can make }\left|\frac{n}{n+1}-1\right|<\epsilon
$$

means that we can find $N \in \mathbb{R}$ such that

$$
\left|\frac{n}{n+1}-1\right|<\epsilon \text { for all } n>N
$$

Definition 0.9

Let $\left\{a_{n}\right\}$ be an infinite sequence of real numbers.
$L \in \mathbb{R}$ is said to be the limit of the sequence if for each $\epsilon>0 \in \mathbb{R}$ there is $N \in \mathbb{R}$ such that

$$
\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Notation: We write $\lim _{n \rightarrow \infty} a_{n}=L$

Example 0.10

1. $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Since, given $\epsilon>0$ we have:

$$
\left|\frac{1}{n}-0\right|=\frac{1}{n}<\epsilon \forall n>\frac{1}{\epsilon}
$$

e.g. If $\epsilon=10^{-6}$ then $\frac{1}{n}<\epsilon \forall n>10^{6}$.
2. $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$. Since, given $\epsilon>0$ we have:

$$
\left|\frac{n}{n+1}-1\right|=\left|\frac{n-(n+1)}{n+1}\right|=\left|\frac{1}{n+1}\right|<\epsilon \forall n>\frac{1}{\epsilon}-1
$$

A constant sequence has a limit in the most trivial way. For example, the sequence $2,2,2,2, \ldots$ clearly has limit 2 .

Using the curly bracket notation $\{2\}$ looks a bit odd for this sequence and so does the limit statement $\lim _{n \rightarrow \infty} 2=2$ but we do write it from time to time.
In general, if k is a real number, the constant sequence $\{k\}$ has limit k and this is written $\lim _{n \rightarrow \infty} k=k$.

Some Properties of Limits:

$\lim _{n \rightarrow \infty} a_{n}=L_{1}, \lim _{n \rightarrow \infty} b_{n}=L_{2} \Rightarrow$
(i) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}=L_{1}+L_{2}$
(ii) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n}=L_{1} L_{2}$
(iii) $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{L_{1}}{L_{2}}$ if $L_{2} \neq 0$.
(iv) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences and $N \in \mathbb{N}$ with $a_{n} \leq b_{n} \forall n \in \mathbb{N}$. If the sequences are convergent with $\lim _{n \rightarrow \infty} a_{n}=L_{1}$ and $\lim _{n \rightarrow \infty} b_{n}=L_{2}$ then $L_{1} \leq L_{2}$.

These properties enable us to compute limits for some compound expressions in terms of constituent parts:

Example 0.11

(i) $\lim _{n \rightarrow \infty} \frac{1}{1+n k}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n}+k}=\frac{\lim _{n \rightarrow \infty} \frac{1}{n}}{\lim _{n \rightarrow \infty} \frac{1}{n}+k}$

- using property (iii) above,

$$
=\frac{\lim _{n \rightarrow \infty} \frac{1}{n}}{\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} k}
$$

- using property (i) above.

We have already proven that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and $\lim _{n \rightarrow \infty} k=k$ and so we have

$$
\lim _{n \rightarrow \infty} \frac{1}{1+n h}=\frac{0}{0+h}=0
$$

(ii) $\lim _{n \rightarrow \infty} \frac{n^{2}+3 n}{2 n^{2}+5}=\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{3 n}{n^{2}}}{\frac{2 n^{2}}{n^{2}}+\frac{5}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{3}{n}}{2+\frac{5}{n^{2}}}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{3}{n}\right)}{\lim _{n \rightarrow \infty}\left(2+\frac{5}{n^{2}}\right)}$

$$
- \text { using property (iii) above, }
$$

$=\frac{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right)}{\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty}\left(\frac{5}{n^{2}}\right)}$
$=\frac{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right)}{\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} 5 \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)}$

- using property (i) above,

We have proven above that $\lim 2=2, \lim 5=5$ and $\lim \frac{1}{n}=0$ therefore we have:

$$
\frac{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right)}{\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} 5 \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)}=\frac{1+0}{2+0}=\frac{1}{2}
$$

